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A NEW CLASS OF . I-SPACES 

B Y  

J. B O U R G A I N  

ABSTRACT 

It is shown that the class of separable ~l-spaces with the Radon-Nikodym 
property only admits L I as universal element. 

1. Introduction 

A LPl-space is a Banach space whose local structure is like 11. More precisely, 

we say that X is a ~ , -space  (A => 1) provided any finite dimensional subspace E 

of X is contained in a finite dimensional subspace F of X which satisfies 

d(F, ll(n))_--<A, where n = d i m F  and d means the Banach-Mazur distance. 

It is well-known that a complemented subspace of an L~(/z)-space is a 

.L~'l-space. An important open question is whether or not these spaces are also 

isomorphic to L a-spaces. The answer is affirmative in case of a norm-1 projection 

(see [18]) or if the given subspace has the Radon-Nikodym property (see [8]). 

Conversely, it is untrue that Lfl-spaces are always isomorphic to complemented 

subspaces of an L 1-space. Recently, joint work of W. B. Johnson and J. 

Lindenstrauss (see [12]) led to a class of oLpl-spaces which are Schur, 

Radon-Nikodym and don't  embed in a separable dual space. At the same time, 

they solve positively the problem on the existence of a continuum number of 

mutually non-isomorphic separable ~-spaces .  If ~f is a class of Banach spaces, 

we say that the space B is universal for ~ provided any member of ~ is 

isomorphic to a subspace of B. In this paper, the existence is shown of a family 

of separable ~l-spaces satisfying the Radon-Nikodym property, such that any 

separable Banach space universal for ~ contains a copy of L 110, 1]. This leads to 

an extension of some earlier work on ~P-spaces for 1 < p <oo and solves a 

question raised by A. Pelczynski (cf. [6]). 
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2. A construction technique for .o9~l-spaee$ 

In this section, we use the notation L '  to denote a separable L ~(/~)-space. Our 

starting point is a simple and rather general way of constructing ~ ' -spaces 

starting from certain operators on L ' .  More precisely, we will prove the 

following 

THEOREM 1. Assume T : L 1 ~ L ' an operator and E a subspace of L ' on 

which T is the identity, i.e. T([)  = f for each f E E. Then 

(a) I f  T does not fix an L Lcopy, then E can be embedded in a ~gl-space not 

containing L '. We recall that an operator is L '-fixing provided it is an isomorphism 

when restricted to a subspace isomorphic to L ' .  

Co) Let T be such that whenever S : L '(l~ ) ~ L i is an operator, the representabil- 

ity of (I - T )S  implies the representability of S. Then E can be embedded in a 

£CLspace with the Radon-Nikodym property. 

PROOF. Fixing p > 1, one can find a sequence of subspaces U, of L* satisfying 

the following conditions: 

(1) Each U, is finite dimensional, let us say d, = dim U,, 
(2) d(U~, ll(dim U~))< p, 

(3) U, C U~+,, 

(4) T( U~ ) C U~ +,, 
(5) I,.,17=1U~ is dense in L ' ,  

(6) UT=,(E N U~) is dense in E. 

That this can be clone is straightforward and we let the reader cheek the details. 

In what follows, • will denote the direct sum in ll-sense. Define 

~ = L I @ ~ U i  

and let P:~g--->L ~ and P~ :~f--~ U~ be the natural projections. We further 

introduce for each j the space 

i 

which embeds in ~f in a natural way. 

For fixed j, let /j : ~ --* ~f be the operator defined as follows: 
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t PI,(x) = TP(x), 
-P,/j(x) = P~(x) for i = 1 , . . . , j ,  

Pj+~I~(x) = P(x)- TP(x)- ~ P~(x), 

P, Ij (x) = 0 for i > j + 1, 

(.) 

for all x E 

Since the inequalities 

and thus 

-~llx II ~ II ~ (x)ll ~ 2(1 ÷ II zll)ll x II 

are clearly satisfied, we see that /, is an isomorphism on its range Bs. 

More precisely, we have 

d(Bj, ~)_--< 4(1 + II zll) 

d(Bj, l'(d~)) ~ 4p(1 + II TII). 

Our next claim is that Bj is a subspace of B~÷~. Let indeed x E ~ and define y 

by 

e ( y )  = e(x) ,  

P,(y)  = P,(x) for i = 1 , . . . , j ,  

Pi÷~(Y) = P(x)- TP(x)- ~ P~(x), 

P,(y)  = 0 for i > j + l ,  

which is a member  of ~,÷1. A simple verification shows that / j+l(y)  = / j (x ) .  This 

shows that Bj CBj÷I. 

Let  B = 0~=1Bj. L 1 embeds in ~ by identification with the first coordinate. By 

hypothesis on T, one has t ha t / j ( x )  = x whenever x E E f3 U, '--> ~ .  Thus E f'l Uj 

is a subspace of Bj and we conclude that E is a subspace of B. 

We show that L ~ does not embed in B if T does not fix an L Lcopy. As a 

consequence of (*), we get 

which makes sense by conditions (3) and (4) on the spaces U~. Notice that 

P(x) = (P + 2, P,) /j(x)  
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(**) P ( x ) =  T ( P + ~ P , ) ( x )  for all x E B 

leading to the following scheme: 

B c  i ) ~ e+~e, ) LI 

2 J  
L ~ 

If B contains an L Lsubspace, one of the operators ~ P~ o/, P o I has to fix a copy 

of L '  (see [9]). Since O~p, oI ranges in O~ U~ which is isomorphic to l ~ and P o I  
factors over T, T will fix an L Lspace. This proves (a) of the Theorem. 

In order to show (b) we rewrite (**) in the form 

(***) ( I - T ) P ( x ) = T ( ~ P O ( x )  f o r a l l x  E B  

which gives the diagram 

I t 

B • ) ~f e e !~ > @ U,--- 

i ~ "521P 

L 1 

p T 

- - -~  Ui ,_~ L 1 i L I ) 

Suppose now S:L~(#)--~B is a non-representable operator.  Since S = 

PS 0(~]~ P,)S and O,  P~ ranges in I t, it follows that PS will be non-representable. 

But, under hypothesis (b) of the theorem, this implies the non-representability of 

the operator  ( I -  T)PS factoring through l L, a contradiction. 

So the proof of Theorem 1 is complete. 

Theorem 1 will be applied to certain spaces E and operators T which will be 

described in the next two sections. 

3. Treespaces  

Our aim is to recall briefly the definition and basic properties of certain 

subspaces of L ~ (1 =< p =< oo) which were introduced and discussed in [6]. 
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N will be  the set of natural numbers  1, 2, 3, -. •. Denote  by ~ the set of finite 

complexes of integers, thus ~ = 0 ~ 1 N  k. For c E ~ ,  ] c I is the length of c. If 

c E ~ ,  d E ~Z, we write c < d provided d starts with c. This leads to a partial 

order  on ~ .  Let us call a branch-set any subset of ~ whose members  are 

mutually comparable .  

A tree T (on N) is a subset of ~ with the proper ty  that a predecessor of a 

m e m b e r  of T is still a m e m b e r  of T. We say that a tree T is well-founded 

provided there is no sequence n~, n2 , . - . ,  nk, • • • such that (nl, n2 , . . . ,  nk )E  T for 

each k. If T is well-founded, denote  o fT]  the (countable) ordinal of T. For  the 

definition of ofT] ,  the reader  may consult [7] or  also [6]. 

We define G as the product group {1, - 1} 2 equipped with its Haar -measure  

m, which is simply the product measure  @ c ~  mo where mc (1) = ½ = m¢ ( -  1) for 

each c ~ ~ .  Obviously G can be identified with the Cantor  group. The 

characters of G are the Walsh functions w, = I-L~s r¢ where S is any finite subset 

of ~ and the c -Rademacke r  function r¢ is defined by r,(x) = xo 

Our  next goal is to define the translation-invariant subspaces X~ of L ' ( G )  for 
l__<p __<o0. 

DEFINmO~. For 1 ~ p _--< oo and T a tree on N, take X~- the closed linear span 

in Lg(G)  of the Walsh-functions ws where S is a branch-set and S C T: 

We will now summarize  the basic propert ies of these spaces X~, which are 

established in [6]. 

THEOREM 2. (1) Assume T well-founded, then 

(a) The spaces X~ have the Radon-Nikodym property. 

(b) For 1 < p <oo, the spaces X p don't contain LP[0, 1] isomorphically. 

(c) The spaces X~ have both the Radon-Nikodym property and the Schur 

property. 

(2) If  1 _-< p < oo (resp. p = oo) and B is a separable Banach space which is 

universal for the family {X~; T well-founded tree}, then LP[0, 1] (resp. C[0, 1]) 

embeds in B. 

(3) For fixed 1 < p < %  the spaces X~ are uniformly complemented in LP(G) 

by the orthogonal projection and consequently either Hiibert-spaces or ~P-spaces 

(cf. [16]). 

(3) does not hold anymore  for p = 1. More precisely, if T is non-finite, then 

the spaces X~-are uncomplemented  in L I(G) and they are never  3?Lspaces. Our  

aim is to show however  that 
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TI-mOREM 3. For T well-founded, the space X~ is a subspace of a ~Lspace 

with the Radon-Nikodym property. 

In view of Theorem 2, this leads to the following result: 

COROLLARY 4. Any separable Banach space which is universal for the class of 

separable Radon-Nikodym ~ L  spaces contains a copy of L i. In particular, the 

latter class of spaces has no universal element. 

The construction of these envelopping .~9?l-spaces will be done by using the 

result presented in the second section of this paper. More precisely, we will 

prove the following 

PROPOSITION 5. For any well-founded tree T, there is an operator o n  LI(G) 
which is the identity on X t and satisfies condition (b) of Theorem 2. 

From this fact and Theorem 2, Theorem 3 follows. 

4. Construction of certain measures on G 

Denote  by C(G)  the space of continuous functions on G. If tt is a measure on 

G and S a finite subset of ~ ,  the S-Fourier  coefficient/2 (S) of/~ is given by 

/2 (S) = f~  wsd/x. 

If /z and v are two measures on G, the convolution /z * v is defined by 

(l~ * v)([) = f f (x .  y)/~ (dx)v(dy)  for f E C(G).  
For a subset S of ~ ,  ~s will denote  the conditional expectation with respect to 

the sub-it-algebra generated by the Rademacker  functions (r,)c~s. 

If tt is a measure on G and S a subset of ~ ,  we say that p, is S-dependent  

p rovided/z  = / z  o gs. 

For  S a subset of ~ ,  take S = {c ~ ~ ; c < d for some d E S}. For conveni- 

ence, we introduce the "empty  complex" (cf. [7]), denoted by the symbol 0 .  

Define ~ * = ~ U {fi~'}. 

If c ~ ~ let c ' E  ~ *  be the immediate predecessor of c. 

A weightfunction will be a function ~- on ~ * ranging in the open interval ]0, 1[ 

such that K, = I-L~.  (2z(c) -1 - 1) < oo. 

If r is a weightfunction, take [¢;~7~]= 1 and [7 ;S]  =IL~s~'(c ') ,  if S is a 

nonempty finite subset of ~ .  

The  next lemma is needed for a later purpose. 
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LEMMA 6. Let ~" be a weight[unction, e > 0 and define 

,5"~ ={S C ~ ;  Sfiniteand ['r; S] >e} .  

Assume further ( Sk ) a sequence of disjoint finite subsets of 8l so that for each k one 

can find S ~ 6f~ with S f') St ~ f~ for each l = 1 , . . . ,  k. Then there exists a sequence 

(n,) of integers such that ( n l , . . . ,  n , )E  U~s~, for each j. 

PROOF. Let us first remark that for fixed c E ~ *  we find Jr; S] _-< ~'(c) IMI for 

each S C ~ ,  where M = { n  EN;  ( c , n ) < d  for some d ~S} .  

Since ¢(c) < 1, this implies that I MI is uniformly bounded for S ranging in 9~E. 

Since the Sk are finite sets, one can pick elements ck @ Sk such that for all k 

there is some S E b ~, with {c~, c2 , . . . ,  ck}CS. It is now possible to construct a 

sequence of integers (n,), so that for each j the set {k ; (n~, • •., n~) < ck} is infinite. 

We indicate briefly the inductive procedure. Suppose n~,- . . ,  nj were obtained. 

By hypothesis, any finite subset of the set {(n~,.. ",ns, n); n ~ N } ,  where 

N = {n ~ N; (n~, • • -, ns, n) < ck for some k}, is contained in S for some S ~ 5¢.. 

By the first observation we made, we conclude that N is finite. This allows us to 

choose nj+~ so that {k ; (m , ' "  ", n, nj+,) < ck} is again infinite. 

Clearly, for each L (na, n2,'" ", n~)E Sk for some k and this ends the proof. 

The main objective of this section is to prove the following result. 

PROPOSITION 7. Let ~" be a weight[unction. Then there exists a measure tz on G 

satisfying the following properties: 

(1) II=<K . 
(2) /~ (S) = 1 if S is a branch set. 

(3) I f  S is a finite subset of ~ and f E C ( G )  is (~\S)-dependent then 

ff  (dx)l  =< Slflf ®. 

PROOF. For c E ~ * ,  let 

~ * = { d @ ~ * ; c < d }  and ~ , ~ = { d E ~ ; c < d } .  

We let 5 be the Dirac-measure on G and 8c the Dirac-measure on the c-factor 

{1, -1}  in the product G. 

If for fixed c E ~,  we define the measure vc on G by 

vc = ¢(c')~ + ( 1 - ~ ' ( c ' ) ) (  ~ ma ® (~ 8d) 

then clearly 

(4) II,,ctl = 1. 
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(5) ~3c(S) = 1 if c ~ S and ~c(S) = ~'(c') if c E S. 

(6) If S is a finite subset of ~ and f ~  C(G) is (~ \S) -dependen t ,  then 

If ws(x)f(x)~,c(ax)l <- ~0(s)llfll-. 
Let v be the measure on G obtained by convolution of the Vo thus 

V =  ~ Vc. 
c E ~  

As an easy verification shows, the following holds: 

(7) II ~ II -- 1. 
(8) ~(s)  = I~; s] .  
(9) If S is a finite subset of ~ and f~  C(G) is (~ \S) -dependen t ,  then 

If w~(x)f(x),,(ax)[ <- [~; s]llfll~. 
Next, consider for fixed c E ~ *  the following measure ri, on G :  

"O~='r(c)-lrS+(1--'r(c)-l)(d~ ma~ ~ ~d) 

satisfying 

(10) II~cll_-__ 2~(O -1 -1 .  
(11) ~ ( S )  = 1 if ~c N S = O and ~ ( S )  = 7(c)  -~ if ~ f'l S ~  0 .  

Since ~" is a weightfunction, we can define the convolution r I of the rl,, thus 

for which 

(12) IIn I1<_- K.. 

Finally, take/~ = v * 7. Then clearly [I/~ l [ -  II ~ II II~ II--< ~ .  
In order  to verify (2), let S be a finite branch set. Then /2  (S) = b(S) .  ~ (S) = 

. H  t --1 [~';S].II{r(c)-l;c ~ t  w i t h ~  flSf~I}= [7 ;S]  ,Es~'(c ) = 1, as required. 

Let us check (3). So take S a finite subset of ~ and an (~ \S ) -dependen t  

function f E C(G). We have 

f w~(~)f(~)~ (a~)= [ w~(x. y)f(x, y)~(,~),~(ay) 
. /  J 

and thus 

II ~ I1[~; s]  supllfy I1~ 
y 

K, [~; s] IIf II- 
completing the proof. 
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5. Non-representable operators ranging in L Lproduct spaces 

Our purpose is to present here some technical ingredients needed for the next 
section. 

The following result is essentially known, but we include its proof here for 

selfcontainedness. 

LEMMA 8. Let tx, v be probability spaces and S :L ' ( I z ) - -*L t ( v )  a non- 

representable operator. Then there exist a bounded convex subset C of L ~(v) and 

p > 0 such that the following holds whenever T : L l(v)--* B is an operator with TS 

representable: I f  f E C and 6 > 0 ,  then there exists some g ~ C so that 

II T( f  - g)ll < 8 and f A I g l d v  >= p for some v-measurable set A with v ( A  ) < & 

PROOF. If S is not representable, then one can find a it-measurable set f~ 

with /~ ( l i ) >  0 and p > 0 such that for any l i ' C  li, /z ( l i ' )>  0 and 8 > 0, there 

exists fl" C l~',/~ (I~") > 0 with J'A I S (FV') ] dv > p/z (li") for some A with v(A)  < 8 

(cf. [8]). If now I~1,.. . ,  I~d are subsets of l i  with positive measure and 6 > 0, 

there exist subsets fl; Cfli (1 =< i = d) of positive measure satisfying the follow- 

ing condition: 

There exists a set A with v ( A ) <  6 such that 

for all scalars a , , - - - ,  a~. 

The proof of the latter fact is elementary and left as an exercise to the reader. 

We show that 

C = {S (~o); ~o E L'+ (li), f ~odu = 1} 

satisfies the condition of the lemma. 

So fix f = S(~0), ~0 E L~+(li), f~odg = 1 and $ > 0 .  

Using the representability of the operator TS, it is possible to find a partition 

l i l , ' " - , l i d  of f l  and scalars al, ."  ", ad, such that 

(i) l ITS( l i , ) / lx ( l i , ) -  TS(li ')/~(li ')[l<~',  whenever n ' c l i , ,  t , ( n ' ) > 0 ,  

(ii) II ~0 - x~ a~xn, I11 < r, 

(iii) E, a,g (ll,) = 1, 

where 1" = 6/(1 + II TS II). 
By the previous observation, one can obtain subsets li~Cl)~ (1 _<--i _--< d)  of 

positive measure and a set A with v ( A ) <  6, so that 
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Take 

. a, tz (1~;) x-~ 

and g = S(~b) ,  belonging to C. Thus fA I g I dv  = p and 

II T ( f -  g)ll = II TS(~o)- TS(~)II 

< 0 + II r s  II),, 

completing the proof. 

COROLLARY 9. Under the hypothesis of Lemma 8, one can find C C L ~( v ) and 

p > 0 such that whenever T:  L l(v) ~ L ~(v) is an operator with TS representable, 

f E C and 8 > O, there exists g ~ C satisfying I I f -  g II > p, I f ( f  - g)du 1< 8 and 

II T( f  - g)[I < & 

Assume now (~ ,  v~)i~o a family of probability spaces and consider the 

product space (f~, v ) =  (YI~I)~,Q,v~). For E CD, denote ~ the corresponding 

conditional expectation. We claim the following 

L E M ~  10. I f  S :LI(Iz)-'-~L~(u) is non-representable, then D has a finite 

subset E so that (I - ~ox~). S is non-representable too. 

PROOF. Let C C L l(v) and/9 > 0 be as in the preceding corollary. Assume the 

above statement wrong. Successive applications of (8) allow us then to construct 

a sequence 0r~) in C and an increasing sequence (Ek) of finite subsets of D in 

such a way that 

(1) lift - ~ IY~ Ill1 < 2 -2, 

(2) I1[~ - f~+, II, > p, 
(3) Ifffk -f~+,)d~ 1 < 2  -k, 
(4) II(f~ - f ~ + , ) -  ~o,E, b'~ -f~+1]111 < 2  -*. 

Take then ~1 = ~,[f~] and q~k = ~x~,_,Lfk - fk-l] for k > 1. By (1) and (4), we 

find that IIf~ - f~-,  - ~k II1 < 8 . 2  -*. Consequently, by (2), I1~, II1 > p - 8.2 -~ and ,  

by (3), I f ,p ,d , , I  < 1 0 . 2  -k. 
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Consider now the sequence qJk = q~k - f  ~kdv, which consists of independent 

mean-zero functions. Since (Ok) is an unconditional basic sequence in L l(v), (~bk) 

is also boundedly complete (cf. [18]). But II q,k II => p - 18.2 -k and on the other 
hand 

a contradiction. 

Repeating applications of Lemma I0 leads to the next 

COROLLARY 11. Suppose moreover (lli, vi) purely atomic for each i E D. 
Then, under the hypothesis of  Lemma 9, there is a sequence (Ek ) of  disjoint finite 
subsets olD,  so that[or all k the operator l-I~=l (I - ~g r,\z,) ° S is not representable. 

6. Application to certain operators on L I(G) 

Referring to section 4, let ¢ be a fixed weightfunction and let /z be the 

measure on G constructed in Proposition 7. Consider the operator A on L ~(G) 

obtained by/z-convolution,  i.e. 

Aq) (x )  = f~ [(x .  y)t~(ay). 

The following is easily derived from Proposition 7. 

PROPOSITION 12. (1)I[AII=<K~.. 
(2) A(ws) = ws if S is a branch. 
(3) I f  S is a finite subset of ~ and f E L ~(G) is S'-dependent, where S CI S' = 0 ,  

then A(w, ® f ) =  ws ® f for some S'-dependent function f in La(G) satisfying 

Ilfll,--- K,b-; s] IIf II,. 

For any well-founded tree T on N, define the operator AT on L~(G) by 

AT = ~T°A = A° ~r. 

It is clear from Proposition 12 (2) that Ar is the identity on X~-. In order to 

prove Proposition 5 and hence conclude the proof of the result stated in the 

abstract, it remains to establish the following fact: 

PROPOSITION 13. I f  F :L ~(A )---> L ' (G) is a non-representable operator, then 

( I - A T ) O F  is also non-representable, for any well-founded tree T. 
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Since G = { 1 , -  1} ~, application of Corollary 11 yields a sequence (Sk) of 

disjoint finite subsets of ~ ,  so that for all k the operator ~k oF is non- 

representable, where ~k = I1~=1 (1 - ~f~\s). 

Assume ( I - A t ) o F  representable and take e = 1/2/~. Then 

14. For each k, there is some S E Sf, such that S C T and S f'l St ~ 0 

for each l = 1 , . . . ,  k. 

Once this is obtained, we may apply Lemma 6, taking the sequence (Sk f3 T) 

into account. This leads to a sequence (n 0 of integers with ( n ,  n2,-- -, hi) E T for 

each ], contradicting the assumption that T was well-founded. So it remains to 

prove the above lemma. 

PROOt~ OF L ~ v t A  14. Fix k, consider the set 

k 

~ = { S  CT;  S C I J  St a n d s  N S t ~ O f o r e a c h  ! = 1 , . - - , k}  
t = l  

and denote its cardinality by r. 
Since Ok oF is non-representable and, by hypothesis, Ok o ( I - A t ) o F  = 

(I  -Ar )° Ok ° F is representable, the operators A~ ~k F and hence ~r Ok F are 

non-representable. Therefore, there exists some ~ E LI(A) satisfying 

II ~ , I ,~ r (~) l l  = 1 and I1(I-  h , ) ¢ ~ r ( ~ ) l l  < Z/3r. 

Define f = ~frckF(q~), which is clearly of the following form: 

f= ~ w~Of~ 

where each [s is (T\  I,.J~=l SI)-dependent. 

Moreover,  by construction, Ilfll = 1 and I1(I -A) f l l  < 1/3r. By Proposition 12 
(3), we see that A(ws ®fs)  = Ws ®i s  for some (T\  I,.J~=l St )-dependent function 

fs in LI (G)  satisfying Ilfs II1 -< ~ [ ~ ;  s]llfs I11. Thus 

A(f)= ~ w s ® f s  and f-A(f)= ~ Ws®(fs-fs). 
S E ~  S E ~  

For each S E ~, we have 

113r > [if - A~f)[I, >= Ills - fs 111 ->-Ills t11-Ills II1 ->- (1 - ~ [ ~ ;  sl)llf~ II1 

and hence for S E ~\S¢,, by the choice of e, IIf~ II1 < 2/3r. 
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Suppose .~ f3 6e~ = O. Then it would follow that 

1 =llfll,-- -< ~ Ilfsll,<213;I/3r, 

a contradiction. Consequently, 3~ N Se~ ~ O, completing the proof. 
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7. Remarks and problems 

(1) One can show that the operators AT for T well-founded do not fix an 
L ~-copy and hence also satisfy condition (a) of Theorem 1. The proof of this fact 
is essentially contained in [4]. 

(2) As far as we know the ~l-spaces  constructed here are also the first 

examples of non-Schur ~l-spaces  which do not contain a copy of L 1. 

(3) Related to this work and also [12] is the following question: 
Does  the class of separable Schur ~'-spaces admit an universal element? And 

its weaker version: 
Does  there exist a separable Banach space not containing L ~ which is 

universal for the latter class of spaces? 
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